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Differential Forms in Synthetic Differential
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We present a basic theory of differential forms in synthetic differential
supergeometry. Exterior differential calculus is developed, and Cartan’ s three
magic formulas as well as a variant of de Rham’ s theorem are established.

INTRODUCTION

Supergeometry is a fascinating subject to both physicists and mathemati-

cians. It has a close relationship with both algebraic geometry and differential

geometry. It is expected to play a central role in any possible unification of

relativity and quantum theory. For textbooks on supergeometry, the reader

is referred to Bartocci et al. (1991) and DeWitt (1984).
Synthetic differential geometry lies between algebraic geometry and

differential geometry, borrowing many important concepts and methods from

the former, while trying to extend the scope of the latter. It is expected to

cater to the pure science of spacetime of the 21th century. For textbooks

on synthetic differential geometry, the reader is referred to Kock (1981),

Lavendhomme (1996), and Moerdijk and Reyes (1991).
As far as we know, Nishimura (1998) and Yetter (1988) are the only

two attempts to extend synthetic differential geometry to supergeometry. Both

deal with a superization of the synthetic theory of vector fields, but go no

further. The principal objective of this paper is to extend the scope of synthetic

supergeometry to the theory of exterior differential calculus. Since supergrav-

ity theories have been formulated successfully in terms of differential forms,
such an extension is of considerable interest not only to mathematicians, but

also to mathematical physicists.
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In Section 1 we superize the notion of differential form in two ways

and establish their equivalence. We establish two of the three superized Cartan

formulas connecting Lie derivatives and interior products. In Section 2 we
establish the existence of superized exterior differentiation and prove the

remaining one of the three superized Cartan magic formulas. The last section

is devoted to a version of de Rham’s theorem.

This paper is to be regarded as a sequel to Nishimura (1998), but we

will often omit the use of prefix ª super.º The field of integers mod 2,

consisting of 0 ( 5 0 mod 2) and 1 ( 5 1 mod 2), is denoted by Z 2. For any
p P Z 2, ( 2 1)p denotes 1 or 2 1 as p 5 0 or p 5 1. Sometimes an integer

is regarded implicitly as an element of Z 2, but the context should prevent

any confusion. Given (p1, . . . , pn) P ( Z 2)
n, the canonical injection of

D p1 3 . . . 3 D pn into D (0, 1)n and the canonical projection of D (0, 1)n

onto D p1 3 . . . 3 D pn are denoted by i p1,...,pn and p p1,...,pn, respectively. The

space D p1 3 . . . 3 D pn is sometimes denoted by D (p1,...,pn). We arbitrarily
choose a microlinear space M (ª microlinearº in the super context) once and

for all. Familiarity with Lavendhomme (1996) up to Chapter 4 will be

highly helpful.

1. DIFFERENTIAL FORMS

Given (p1, . . . , pn) P ( Z 2)
n, an n-microcube of type (p1, . . . , pn) on M

is a function from D p1 3 . . . 3 D pn to M. We denote by Tp1,...,pnM the totality

of n-microcubes of type (p1, . . . , pn) on M. We denote by TnM the set-
theoretic union of Tp1,...,pn for all (p1, . . . , pn) P ( Z 2)

n. Given g P
Tp1,...,pnM and a P R e, an n-microcube g ? i a 5 a ? i g of type (p1, . . . , pn) on

M (1 # i # n) is defined by

(1.1) ( g ? i a)(d1, . . . , dn 5 g (d1, . . . , adi , . . . , dn)

(1.2) (a ? i g )(d1, . . . , dn 5 g (d1, . . . , di a, . . . , dn)

for any (d1, . . . , dn) P D p1 3 . . . 3 D pn. Given g P Tp1,...,pnM and a P R o,

n-microcubes g ? i a and a ? i g of type (p1, . . . , pi 1 1, . . . , pn) on M (1 #
i # n) are defined by (1.1) and (1.2), respectively, in which we should note

that g ? i a Þ a ? i g generally. Given g P Tp1,...,pnM and s P Bermn , an n-

microcube S s ( g ) of type (p s 2 1(1), . . . , p s 2 1(n)) on M is defined as follows:

(1.3) S s ( g )(d1, . . . , dn) 5 g (d s (1), . . . , d s (n)) for any (d1, . . . , dn) P
D p s 2 1

(1) 3 . . . 3 D p s 2 1
(n).

A differential n-form on M is a mapping v from TnM to R satisfying
the following conditions:

(1.4) v ( g ? i a) 5 v (a ?i 1 1 g )(1 # i # n 2 1), while v ( g ?n a) 5 v ( g )a
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for any a P R e and any g P TnM.

(1.5) If g is an n-microsquare of type (p1, . . . , pn) on M, then

v ( S (i, j) g ) 5 ( 2 1)1 1 h i, j v ( g ) (1 # i , j # n), where h i, j 5
pi ( j

h 5 i 1 1ph 1 pj ( j 2 1
h 5 i 1 1ph.

We denote by V n(M ) the totality of differential n-forms on M. A differential
n-form v on M is called graded if it satisfies the following condition:

(1.6) v ( g ? i a) 5 v (a ?i 1 1 g ) (1 # i # n 2 1), while v ( g ?n a) 5 v ( g )a

for any a P R o and any g P TnM.

We denote by V n(M ) the totality of graded differential n-forms on M.

An n-supermicrocube on M is a mapping from D (0, 1)n to M. We denote

by TnM the totality of n-supermicrocubes on M. Given g P TnM and a P
R , n-supermicrocubes g ? i a and a ? i g on M (1 # i # n) are defined as in

(1.1) and (1.2), respectively. Given g P TnM and s P Bermn , an n-supermi-
crocube S s ( g ) on M is defined as in (1.3). An n-supermicrocube g on M is

said to be of type (p1, . . . , pn) providing that g + i p1,...,pn + p p1,...,pn 5 g . A

differential n-superform on M is a mapping v from TnM to R subject to the

following conditions:

(1.7) v ( g ? i a 5 v (a ?i 1 1 g ) (1 # i # n 2 1), while v ( g ?n a) 5 v ( g )a

for any a P R and any g P TnM
(1.8) If g is an n-supermicrocube of type (p1, . . . , pn) on M, then

v ( S (i, j) g ) 5 ( 2 1)1 1 h i, j v ( g )(1 # i , j # n), where h i, j 5
pi S j

h 5 i 1 1ph 1 pj S j 2 1
h 5 i 1 1ph.

We denote by V n(M ) the totality of differential n-superforms on M.

The partial binary operation 1
i

among Tp1,...,pnM and among TnM (1 #
i # n) is defined as in Lavendhomme (1996, §3.4, p. 88), for which we have

the following additivity of differential n-forms and differential n-superforms:

Proposition 1.1. (1) If v is a differential n-form and g and g 8 are n-

microcubes of the same type such that g 1
i

g 8 is defined, then v ( g 1
i

g 8) 5
v ( g ) 1 v ( g 8) (1 # i # n).

(2) If v is a differential n-superform and g and g 8 are n-supermicrocubes

such that g 1
i

g 8 is defined, then v ( g 1
i

g 8) 5 v ( g ) 1 v ( g 8) (1 # i # n).

Proof. The first statement follows from the componentwise R e-homoge-

neity (1.4) by the same token as in Lavendhomme (1996, §1.2, Proposition

10). Similarly the second statement follows from the componentwise R -

homogeneity (1.7). n

To each v P V n(M ) we can assign a graded differential n-form F ( v )

as follows:
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(1.9) If g is an n-microcube of type (p1, . . . , pn) on M, then F ( v )( g ) 5
v ( g + p p1,...,pn).

It is easy to see, by Proposition 1.1, that for any v P V n(M ) and any
g P TnM we have

(1.10) v ( g ) 5 S (p1,...,pn) P ( Z 2)
n v ( g + i p1,...,pn + p p1,...,pn).

Proposition 1.2. For any graded differential n-form v on M there exists

a unique differential n-superform v on M such that v 5 F ( v ).

Proof. It follows from (1.9) and (1.10) that if such v exists, it should

be defined as follows:

(1.11) v ( g ) 5 S (p1,...,pn) P ( Z 2)n v ( g + i p1,...,pn)

for any g P TnM. By Proposition 1.1 it is easy to see that properties (1.4)±(1.6)

imply properties (1.7) and (1.8). n

The above proposition implies that F gives a bijective correspondence

between V n(M ) and V n(M ).

Now we define the interior product iX v and the Lie derivative LX v of

a differential n-form v with respect to a vector field X on M, while exterior

differentiation will be discussed in the next section. Recall (Nishimura, 1998)
that a vector field on M is a mapping X from D (0, 1) to M M with X0 being

the identity transformation 1M of M. The totality of vector fields on M is

denoted by x (M ). It is a Z 2-graded R -bimodule whose even and odd parts

x 0(M ) and x 1(M ) can naturally be identified with the totality of mappings

X from D0 to M M with X0 5 1M and that of mappings Y from D 1 to M M with

Y0 5 1M , respectively. Given X P x p1(M ) and g P T p2,...,pnM, we define X *
g P T p1...,pnM as follows:

(1.12) (X * g )(d1, . . . , dn) 5 Xd1( g (d2, . . . , dn))

for any (d1, . . . , dn) P D p1 3 ? ? ? 3 D pn. Given X P x p(M ) and v P V n

(M ), we define iX v P V n 2 1(M ) as follows:

(1.13) (iX v )( g ) 5 v (X * g ) for any g P T n 2 1M

The R -module V n(M ) is Euclidean, so that given X P x p(M ) and v P
V n(M ), we can define LX v P V n(M ) to be unique such that

(1.14) (Xd)* v 2 v 5 dLX v for any d P Dp

where ((Xd)* v )( g ) 5 v (Xd + g ).

For X P x (M ) we define iX v and LX v as follows:

(1.15) iX v 5 iXe v 1 iXo v
(1.16) LX v 5 LXe v 1 LXo v
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It is easy to see the following result.

Proposition 1.3. If X is a vector field on M and v is a graded differential
n-form on M, then differential forms iX v and LX v are graded.

Proposition 1.4. For any X P x p(M ) and Y P x q(M ) we have

(1.17) L[X,Y] 5 LXLY 2 ( 2 1)pqLYLX

(1.18) i[X ,Y] 5 LXiY 2 ( 2 1)pqiYLX

Proof. (1.17) follows by the same token as in Nishimura (1997a, Theorem

1.6), while (1.18) follows by the same token as in Nishimura (1997a, Theo-
rem 1.8). n

2. EXTERIOR DIFFERENTIATION

A marked n-microcube of type (p1, . . . , pn) on M is a pair ( g , e) of an

n-microcube g of type (p1, . . . , pn) on M and e 5 (e1, . . . , en) P Dp1 3 ? ? ?
3 Dpn. We denote by TÄ p1,...,pnM the totality of marked n-microcubes of type

(p1, . . . , pn) on M. We denote by TÄ nM the set-theoretic union of TÄ p1,...,pnM
for all (p1, . . . , pn) P ( Z 2)

n. We denote by Cn(M ) the free R -module generated

by TÄ nM. The boundary operator - : Cn 1 1(M ) ® Cn(M ) is defined on the
generators of Cn 1 1(M ) as follows and extended to Cn 1 1(M ) by R -linearity:

(2.1) - ( g , e) 5 o
n 1 1

i 5 1

( 2 1)i 1 a iG i( g , e)

where

(2.2) a i 5 pi ( o
h Þ i

ph)

(2.3) G i( g , e) 5 F i
0( g , e) 2 F i

1( g , e) with F i
j ( g , e) 5 ( g i

j, (e1, . . . ,

eÃi , . . . , en 1 1)) and g i
j (d1, . . . , dn) 5 g (d1, . . . , di 2 1, jei , di , . . . ,

dn) for any (d1, . . . , dn) P Dp1 3 ? ? ? 3 Dpi 2 1 3 Dpi 1 1 3 ? ? ? 3
Dpn 1 1 ( j 5 0, 1)

Proposition 2.1. - + - 5 0.

Proof. Let ( g , e) be a marked (n 1 1)-microcube of type (p1, . . . , pn 1 1)

on M. For any natural numbers i, j with 1 # i , j # n 1 1, the coefficient

of G i(G j( g , e)) in - ( - ( g , e)) is ( 2 1)i 1 j 1 a j 1 b i with a j 5 pj ( ( h Þ j ph) and b i 5
pi ( ( h Þ i, j ph), while the coefficient of G j 2 1(G i( g , e)) in - ( - ( g , e)) is

( 2 1)i 1 j 2 1 1 a i 1 b j with a i 5 pi ( ( h Þ i ph) and b j 5 pj ( ( h Þ i, j ph). Since a j 1 b i 5
a i 1 b j 5 pipj , the desired statement obtains by the same token as in

Lavendhomme (1996, §4.2, Proposition 1). n



658 Nishimura

Given ( g , e) P TÄ nM and v P V n(M ) with e 5 (e1, . . . , en), the integral
f (( g ,e) v of v on ( g , e) is defined as follows:

(2.4) # ( g ,e)

v 5 v ( g )e1 . . . en

The integral can be extended linearly to Cn(M ).
Given v P V n(M ), it is easy to see that the function w : TÄ n(M ) ® R

defined by w ( g , e) 5 * ( g ,e) v satisfies the following properties:

(2.5) For each e in D (p1,...,pn), w ( ? , e) is n- R e-homogeneous in

T p1,...,pnM.

(2.6) For each g in T p1,...,pnM, w ( g , ? ) is n- R e-homogeneous in

D (p1,...,pn).
(2.7) For each s in Bermn and each marked n-microcube ( g , e) of

type (p1, . . . , pn) on M, we have w ( S s ( g )), e s 2 1) 5 | s | w ( g , e)

where | s | is the sign of s .

Now we have the following converse.

Proposition 2.2. If a function w from TÄ nM to R obeys conditions (2.5)±

(2.7), then there exists a unique differential n-form v on M such that

(2.8) w ( g , e) 5 # ( g , e)

v

Proof. By the same token as in Lavendhomme (1996, §4.2, Proposi-

tion 2). n

Proposition 2.3. For any differential n-form v on M there exists a unique

differential (n 1 1)-form d v such that

(2.9) # - ( g ,e)

v 5 # ( g ,e)

d v

for any ( g , e) in TÄ nM.

Proof. This follows from Proposition 2.2 by the same token as in Laven-

dhomme (1996, §4.2, Proposition 3). n

Proposition 2.4. We have

(2.10) d v ( g ) 5 o
n 1 1

i 5 1

( 2 1)i 1 1 1 j i(F i D
¬

pi)(0)

for any n-microcube g of type (p1, . . . , pn 1 1) on M, where j i 5 pi ( h . i ph

and F i(e) 5 v ( g i(e)) for any e P D pi with g i(e)(d1, . . . , dn) 5 g (d1, . . . ,
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di 2 1, e, di , . . . , dn) for any (d1, . . . , dn) P D p1 3 ? ? ? 3 D pi 2 1 3 D pi 1 1 3
? ? ? 3 D pn 1 1.

Proof. This follows from the proof of Proposition 2.3 by the same token

as in Lavendhomme (1996, §4.2, Proposition 4). n

Proposition 2.5. If a differential n-form v on M is graded, so is d v .

The above proposition follows from the following two lemmas.

Lemma 2.6. We have

(2.11) d v ( g ?n 1 1 a) 5 d v ( g )a

for any (p1, . . . , pn 1 1) P ( Z 2)
n 1 1, any g P Tp1,...,pn 1 1M, and any a P R o.

Proof. Let (p1, . . . , pn , pn 1 1) 5 (p1, . . . , pn , pn 1 1 1 1). By Proposition
2.4 we have

(2.12) d v ( g ?n 1 1 a) 5 o
n 1 1

i 5 1

( 2 1)i 1 1 1 j i(F i D
¬

pi)(0)

(2.13) d v ( g ) 5 o
n 1 1

i 5 1

( 2 1)i 1 1 1 j i(F i D
¬

pi)(0)

where j i 5 p i ( h . i ph and F i(e) 5 v ( g i(e)) for any e P D pi with g i(e)(d1, . . . ,

dn) 5 g (d1, . . . , di 2 1, e, di , . . . , dna) for any (d1, . . . , dn) P D p1 3 ? ? ? 3
D pi 2 1 3 D pi 1 1 3 ? ? ? 3 D pn 1 1 (1 # i # n) and g n 1 1(e)(d1, . . . , dn) 5
g (d1, . . . , dn , ae) for any (d1, . . . , dn) P D p1 3 ? ? ? 3 D pn, while j i 5
pi ( h . i ph and F i(e) 5 v ( g i(e)) for any e P D pi with g i(e)(d1, . . . , dn) 5
g (d1, . . . , di 2 1, e, di , . . . , dn) for any (d1, . . . , dn) P D p1 3 ? ? ? 3
D pi 2 1 3 D pi 1 1 3 ? ? ? 3 D pn 1 1 (1 # i # n 1 1). For any natural number i
with 1 # i # n and any e P D pi we have

(2.14) F i D
¬

pi(0)e 5 F i(e) 2 F i(0)

5 (F i(e) 2 F i(0))a [since v is graded]

5 F i D
¬

pi(0)ea

5 ( 2 1)piFi D
¬

pi(0)ea.

so that

(2.15) F i D
¬

pi(0) 5 ( 2 1)piFi D
¬

pi(0)a



660 Nishimura

On the other hand, for any e P D pn 1 1, we have

(2.16) F n 1 1 D
¬

pn 1 1(0) 5 F n 1 1 D
¬

pn 1 1(0)a

Since j i 5 j i 1 pi (1 # i # n) and j n 1 1 5 j n 1 1 5 0, the desired equality

(2.11) follows from (2.12), (2.13), (2.15), and (2.16). n

Lemma 2.7. We have

(2.17) d v ( g i a) 5 d v (ai 1 1 g ) (1 # i # n)

for any ( p1, . . . , pn 1 1) P ( Z 2)
n 1 1, any g P T p1,...,pn 1 1M, and any a P R 0.

Proof. Let (p1, . . . , pi , . . . , pn 1 1) 5 (p1, . . . , pi 1 1, . . . , pn 1 1) and

(p1, . . . , pi 1 1, . . . , pn 1 1) 5 (p1, . . . , pi 1 1 1 1, . . . , pn 1 1). Let j j and F j

(1 # j # n 1 1) be the same as in Proposition 2.4. By Proposition 2.4 we have

(2.18) d v ( g ? i a) 5 o
n 1 1

j 5 1

( 2 1) j 1 1 1 j j(F j D
¬

pj)(0)

(2.19) d v (a ?i 1 1 g ) 5 o
n 1 1

j 5 1

( 2 1) j 1 1 1 j j(Fj D
¬

pj)(0)

where j j 5 p j ( h . j ph and F j(e) 5 v ( g j(e)) for any e P D pj with g j(e)(d1, . . . ,

dn) 5 ( g ? i a)(d1, . . . , dj 2 1, e, dj , . . . , dn) for any (d1, . . . , dn) P D p1 3
? ? ? 3 D pj 2 1 3 D pj 1 1 3 ? ? ? 3 D pn 1 1 (1 # j # n 1 1), while j j 5 pj ( h . j ph

and Fj(e) 5 v ( g j(e)) for any e P D pj with g j(e)(d1, . . . , dn) 5
(a ?i 1 1 g )(d1, . . . , dj 2 1, e, dj , . . . , dn) for any (d1, . . . , dn) P D p1 3 ? ? ? 3
D pj 2 1 3 D pj 1 1 3 ? ? ? 3 D pn 1 1 (1 # j # n 1 1). For any j with j Þ i and

j Þ i 1 1,

(2.20) F j D
¬

pj (0)e 5 F j(e) 2 F j (0)

5 FÅ j (e) 2 FÅ j (0) [since v is graded]

5 FÅ j D
¬

pj (0)e

so that

(2.21) F j D
¬

pj (0) 5 FÅ j D
¬

pj (0)

For j 5 i we have that for any e P D pi,
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(2.22) F i D
¬

pi(0)e 5 F i D
¬

pi (0)ae

5 ( 2 1)piFi
D
¬

pi (0)ea

5 ( 2 1)pi{F i(e) 2 F i(0)}a

5 ( 2 1) ( h $ iph{FÅ i(e) 2 FÅ i(0)}

[since v is graded]

5 ( 2 1) ( h $ iphFÅ i D
¬

pÅ i (0)e

so that

(2.23) F i D
¬

pi(0) 5 ( 2 1) ( h $ iphFÅ i D
¬

pÅ i (0)

For j 5 i 1 1 we have that for any e P D pÅ i 1 1,

(2.24) FÅ i 1 1 D
¬

pÅ i 1 1(0)e 5 ( 2 1)pÅ i 1 1F i 1 1 D
¬

pi 1 1(0)ae

5 F i 1 1 D
¬

pi 1 1(0)ea

5 {F i 1 1(e) 2 F i 1 1(0)}a

5 ( 2 1) ( h . i 1 1ph{F i 1 1(e) 2 F i 1 1(0)}

[since v is graded]

5 ( 2 1) ( h . i 1 1phF i D
¬

pÅ i (0)e

so that

(2.25) FÅ i 1 1 D
¬

pÅ i 1 1(0) 5 ( 2 1) ( h . i 1 1phF i D
¬

pÅ i(0)

For j with j , i we have

(2.26) j j 5 j Å j 5 pj 1 j j

while for j with j . i 1 1 we have

(2.27) j j 5 j Å j 5 j j
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On the other hand, we have

(2.28) j i 5 j i 1 o
h . i

ph

5 j Å i 1 o
h $ i

ph

(2.29) j Å i 1 1 5 j i 1 1 1 o
h . i 1 1

ph

5 j i 1 1 1 o
h . i 1 1

ph

Therefore (2.17) follows from (2.18), (2.19), (2.21), (2.23), (2.25), and

(2.26)±(2.29). n

We conclude this section with the remaining one of Cartan’ s three magic

formulas in our super context.

Proposition 2.8. For any X P x (M ) we have

(2.30) LX 5 diX 1 iXd

Proof. This follows from Proposition 2.4 by the same token as in Nishi-
mura (1997a, Theorem 1.9). n

3. DE RHAM’s THEOREM

In this section we establish a cubical, infinitesimal, and super version
of de Rham’s theorem on the level of chain complexes after the manner of

FeÂlix and Lavendhomme (1990). Our result is more frivolous than theirs, but

we could not expect much more, because, as is well known, Stokes’ theorem

does not obtain in our super context.

Proposition 3.1. We have

(3.1) d + d 5 0

so that ( V n(M ), d) is a chain complex.

Proof. This follows from Proposition 2.1. n

We say that two elements c and c8 of Cn(M ) are equivalent, in notation

c , c8, provided that * c v 5 * c8 v for any v P V n(M ). Obviously the relation
, is an equivalence relation, with respect to which the quotient module of

Cn(M ) is denoted by Sn(M ). It is easy to see that for any c P Cn(M ), c ,
0 implies - c , 0, so that we have a chain complex (Sn(M ), - ), whose dual

chain complex is denoted by (Sn(M ), d ).
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Proposition 3.2. For every n the diagram

*
V n(M ) Ð Ð ® Sn (M )

½
½
¯

½
½
¯

d d

v n 1 1(M ) Ð Ð ® Sn 1 1(M )
*

commutes, so that * is a morphism of chain complexes.

Proof. This follows from the definition of d. n

Theorem 3.3. The morphism * of chain complexes from ( V n(M ), d) to

(Sn(M ), d ) is an isomorphism, so that the two chain complexes are isomorphic.

Proof. This follows from Proposition 2.2. n
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